Радиоэлектроника
1 1 1 1 1 1 1 1 1 1 Рейтинг 0.00 (0 Голосов)

Двигатель постоянного тока

Для двигателя постоянного тока (ДПТ) основными уравнениями являются:

- уравнение электрического равновесия ;

- уравнение механического равновесия ;

- уравнение связи .

Структурная схема двигателя постоянного тока

Рис.5.1. Структурная схема двигателя постоянного тока

Данным уравнениям соответствует структурная схема рис.5.1.

Если , то , (Ке = Км в системе СИ).

Из структурной схемы можно вывести ряд передаточных функций, поскольку есть входные сигналы U, MC, Ф, есть внутренние координаты I, M, есть выходная координата w.

Выведем следующие передаточные функции при Ф = const:

, , , .

,

где .

;

;

Характеристический полином

Корни полинома

При корни вещественные отрицательные ;

При корни комплексные.

В первом случае полином может быть записан в следующем виде:

Во втором случае имеем комплексные корни:

.

Характеристический полином получает вид:

,

где , .

На рис. 5.2, 5.3, 5.4 представлены ЛАЧХ для четырех выше выведенных передаточных функций ДПТ при . Учтено, что

; .

ЛАЧХ для передаточных функций ДПТ

 

 

 

 

 

Рис.5.2. ЛАЧХ для передаточных функций ДПТ

ЛАЧХ для передаточной функции ДПТ

 

 

 

 

 

Рис. 5.3. ЛАЧХ для передаточной функции ДПТ

ЛАЧХ для передаточной функции ДПТ

 

 

 

Рис. 5.4. ЛАЧХ для передаточной функции ДПТ

При комплексных корнях характер ЛАЧХ будет аналогичным, но может появиться небольшой резонансный пик ( находится в пределах от 0,4 и более).

Цепь намагничивания ДПТ можно представить структурной схемой по рис. 5.5, где

- постоянная времени ОВ (находится в пределах 0,5 ··· 4 сек.)

Tвт - постоянная времени вихревых токов в станине и полюсах

(Твт = (0,1 ··· 0,2)Тв);

- находится из кривой намагничивания;

Структурная схема цепи возбуждения ДПТ

Рис.5.5. Структурная схема цепи возбуждения ДПТ.

При регулировании потоком ДПТ существенно нелинейное звено. Во - первых, в структуре рис. 5.1 появляются два блока произведения, во-вторых, надо учитывать нелинейность кривой намагничивания.

Следует отметить, что структурная схема ДПТ при Ф = const рассматривается при постоянстве параметров, т. е. в предположении, что реакция якоря полностью скомпенсирована, активное сопротивление и индуктивность якорной цепи постоянны. Для кривой намагничивания пренебрегаем петлей гистерезиса (при регулировании потоком). Обычно пренебрегаем зависимостью МС от скорости вращения. Однако реально все эти влияния есть и они существенны.

Рассчитаем изменения RЯ при изменении температуры обмотки с 20 °С до 90 °С :

Таким образом, активное сопротивление якорной цепи изменяется на 28 % при переходе от начального включения до рабочей температуры в 90 °С.

Сопротивление может быть найдено из каталогов (при приведении к рабочей температуре ).

Сопротивление якорной цепи можно приближенно определить по данным на щитке электрической машины. Полагая, что при работе двигателя в номинальном режиме его постоянные РПОСТ и переменные РПЕР потери равны, получим

;

ρд = (1 ··· 2) % при Р > 100 кВт;

ρд = (2 ··· 5) % при Р = (100 ··· 5) кВт;

ρд = (5 ··· 10) % при Р = (5 ··· 0,5) кВт;

ρд > 10 % при Р = (0,5 ··· 0,1) кВт.

Экспериментально RЯ находится методом амперметра – вольтметра.

Индуктивность якоря изменяется еще больше, чем сопротивление якорной цепи. Ее рассчитывают

,

где: n = 0,1 – 0,2 для машин с компенсационной обмоткой (0,25 – для крупных машин); n=0,6 для машин без компенсационной обмотки; рп – число пар полюсов.

Опыты оказывают, что с изменением тока якоря от 0 до пускового индуктивность якоря уменьшается на 30 – 45%.

Экспериментально LЯ определяется по кривой гашения поля [25]. Обмотка якоря подключается к источнику постоянного тока и в некоторый момент замыкается накоротко.

По осцилографируемой кривой IЯ = f(t) (рис. 5.6) можно рассчитать LЯ по уравнению: ,

откуда .

Экспериментальное определение ТЯ по кривой гашения поля

Рис. 5.6. Экспериментальное определение ТЯ по кривой гашения поля

Индуктивность обмотки якоря при включенной цепи возбуждения на 15 -20 % меньше, чем при отключенной (сказывается насыщение магнитной цепи). Поэтому опыт желательно проводить при включенной цепи возбуждения.

Определение момента инерции двигателя по геометрическим размерам отдельных вращающихся деталей трудоемок и неточен. Поэтому момент инерции определяется экспериментальным путем по кривой выбега и потерям холостого хода. Двигатель разгоняется до некоторой скорости, а затем отключается от сети, осциллографируется кривая выбега (рис. 5.7.).

Определение момента инерции двигателя по кривой выбега.

Рис. 5.7. Определение момента инерции двигателя по кривой выбега.

Затем определяются потери холостого хода при ряде значений скорости, рассчитывается и строится кривая

Момент инерции определяется следующим образом: .

Значение J определяется для нескольких точек, усредняется, в результате достигается достоверность результатов. Данная методика используется в том числе при определении момента инерции всей системы «двигатель – рабочая машина».

Идентификацию (определение математической модели объекта по экспериментальным данным) удобно производить на ЭВМ, вводя в нее массив точек переходных процессов. В настоящее время в наладочных организациях имеются приборы на основе микроЭВМ, в которые через АЦП данные вводятся автоматически и рассчитываются параметры объекта.

Постоянные времени электромеханической системы могут быть определены методами активной идентификации при подаче на вход воздействия периодического характера. В результате получают ЛАЧХ, по сопрягающим частотам которой определяют постоянные времени.